Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Abstract The HAWC Observatory collected 6 yr of extensive data, providing an ideal platform for long-term monitoring of blazars in the very high energy (VHE) band, without bias toward specific flux states. HAWC continuously monitors blazar activity at TeV energies, focusing on sources with a redshift ofz≤ 0.3, based on the Third Fermi-LAT Catalog of High-Energy sources. We specifically focused our analysis on Mrk 421 and Mrk 501, as they are the brightest blazars observed by the HAWC Observatory. With a data set of 2143 days, this work significantly extends the monitoring previously published, which was based on 511 days of observation. By utilizing HAWC data for the VHEγ-ray emission in the 300 GeV–100 TeV energy range, in conjunction with Swift-XRT data for the 0.3–10 keV X-ray emission, we aim to explore potential correlations between these two bands. For Mrk 501, we found evidence of a long-term correlation. Additionally, we identified a period in the light curve where the flux was very low for more than 2 yr. On the other hand, our analysis of Mrk 421 measured a strong linear correlation for quasi-simultaneous observations collected by HAWC and Swift-XRT. This result is consistent with a linear dependence and a multiple-zone synchrotron self-Compton model to explain the X-ray andγ-ray emission. Finally, as suggested by previous findings, we confirm a harder-when-brighter behavior in the spectral evolution of the flux properties for Mrk 421. These findings contribute to the understanding of blazar emissions and their underlying mechanisms.more » « lessFree, publicly-accessible full text available February 5, 2026
- 
            Abstract The Galactic Halo is a key target for indirect dark matter detection. The High Altitude Water Cherenkov (HAWC) observatory is a high-energy (∼300 GeV to >100 TeV) gamma-ray detector located in central Mexico. HAWC operates via the water Cherenkov technique and has both a wide field of view of ∼ 2 sr and a >95% duty cycle, making it ideal for analyses of highly extended sources. We made use of these properties of HAWC and a new background-estimation technique optimized for extended sources to probe a large region of the Galactic Halo for dark matter signals. With this approach, we set improved constraints on dark matter annihilation and decay between masses of 10 and 100 TeV. Due to the large spatial extent of the HAWC field of view, these constraints are robust against uncertainties in the Galactic dark matter spatial profile.more » « less
- 
            Free, publicly-accessible full text available November 1, 2025
- 
            IceCube_Collaboration (Ed.)Abstract More than 10000 photomultiplier tubes (PMTs) with a diameter of 80 mm will be installed in multi-PMT Digital Optical Modules (mDOMs) of the IceCube Upgrade. These have been tested and pre-calibrated at two sites. A throughput of more than 1000 PMTs per week with both sites was achieved with a modular design of the testing facilities and highly automated testing procedures. The testing facilities can easily be adapted to other PMTs, such that they can, e.g., be re-used for testing the PMTs for IceCube-Gen2. Single photoelectron response, high voltage dependence, time resolution, prepulse, late pulse, afterpulse probabilities, and dark rates were measured for each PMT. We describe the design of the testing facilities, the testing procedures, and the results of the acceptance tests.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
